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Let β > 1. It is well known that every x ∈ [0, �β�/(β − 1)] has a β-expansion of the
form x =

P∞
k=1 δkβ−k with δi ∈ {0, 1, . . . , �β�}, where �β� denotes the largest integer

not exceeding β. Let Σβ(x) and Σβ,n(x) denote the sets of all β-expansions of x and
the set of n-prefixes of all β-expansions of x, respectively. We show that #Σβ(x) =
2ℵ0 , dimH Σβ(x) > 0 and limn→∞ 1

n
log#Σβ,n(x) > 0 are equivalent under a certain

finiteness condition.
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1. Introduction

Let β > 1 be a non-integer. We consider expansions of x ∈ Jβ := [0, �β�/(β − 1)] of
the form

x =
∞∑

i=1

δi

βi
with δi ∈ {0, 1, . . . , �β�},

where �β� denotes the largest integer not exceeding β. The infinite sequence (δi)∞i=1

is called a β-expansion of x. We write (δi) instead of (δi)∞i=1 for simplicity, except
when we want to emphasize the first digit of (δi). The study of expansions in
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non-integer bases were pioneered by the papers of Rényi [20] and Parry [19]. Let
Σβ(x) denote the set of all β-expansions of x and Σβ,n(x) the set of n-prefixes of
all β-expansions of x, i.e.

Σβ(x) =

{
(δi) ∈ {0, 1, . . . , �β�}N : x =

∞∑
i=1

δiβ
−i

}
,

Σβ,n(x) = {(εi)n
i=1 ∈ {0, 1, . . . , �β�}n : there exists

(εi)∞i=n+1 ∈ {0, 1, . . . , �β�}N such that (εi) ∈ Σβ(x)}.

The set Σβ(x) plays an important role in the investigation of representations for real
numbers in non-integer bases. In the past two decades the set U of all such β > 1 for
which #Σβ(1) = 1 has been widely investigated and numerous interesting results
have been obtained (see [1, 7–10, 13–15] and references therein). Here and hereafter
#A denotes the cardinality of a set A. Recently, the Hausdorff dimension of the set
of all points belonging to Jβ which have a unique β-expansion was calculated in
[16, 17, 24].

On the other hand, the cardinality of the set Σβ(x) also has received a lot
of attention. Glendinning and Sidorov [12] showed that the Komornik–Loreti con-
stant (see [1, 13]) is the critical value which separates the cardinality of set Σβ(x)
being uncountable from countable. It was shown in [10] that each x ∈ Jβ has
2ℵ0 different β-expansions if β ∈ (1, (1 +

√
5)/2). This result was strengthened in

[6, 21, 22] to get that for any non-integer β > 1, almost every x ∈ Jβ has 2ℵ0 dis-
tinct β-expansions. Moveover, some similar results also hold in two dimensions [23].
Recently, Feng and Sidorov [11] showed that for any Pisot number β > 1 there has
limn→∞ 1

n log #Σβ,n(x) > 0 for almost every x ∈ Jβ . Here limn→∞ 1
n log #Σβ,n(x)

is called the growth rate of the set Σβ,n(x), provided that the limit exists. The
growth rate was further investigated by Baker [2, 3]. In [3] Baker showed that under
some conditions the growth rate of the set Σβ,n(x) and Hausdorff dimension of the
set Σβ(x) are equal and explicitly calculable. In fact, all the quantities #Σβ(x),
limn→∞ 1

n log #Σβ,n(x) and dimH Σβ(x) reveal the complexity of the set Σβ(x). In
this paper we are mainly concerned with the relation among them. We show that
under a certain finiteness condition, the cases of #Σβ(x) = 2ℵ0 , dimH(Σβ(x)) > 0
and limn→∞ 1

n log #Σβ,n(x) > 0 are equivalent.
As one knows the set Jβ = [0, �β�/(β − 1)] can be regarded as the self-similar

set generated by the iterated function system (IFS) {fk(x) = β−1(x + k) : k =
0, 1, . . . , �β�}, i.e.

Jβ =
�β�⋃
k=0

fk(Jβ).

As usual, a coding mapping Π : {0, 1, . . . , �β�}N → Jβ is then defined by

Π((δi)) =
∞∑

i=1

δi

βi
for (δi) ∈ {0, 1, . . . , �β�}N.
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Then we have that Π is surjective and for each x ∈ Jβ and n ∈ N

Σβ(x) = Π−1(x) and Σβ,n(x) = {(δi) |n : (δi) ∈ Π−1(x)},

where (δi) |n = (δi)n
i=1 is the n-prefix of (δi).

Denote Ik = fk(Jβ) = [ k
β , k

β + �β�
β(β−1) ] and partition the interval Jβ = [0, �β�/

(β − 1)] into switch regions Si and equality regions Ei by letting

Si = Ii−1 ∩ Ii =
[

i

β
,

�β�
β(β − 1)

+
i − 1

β

]
�= ∅ for i = 1, 2, . . . , �β�

and

Ei = Ii\
�β�⋃
k=1

Sk for i = 0, 1, . . . , �β�.

Thus we have

Ei =




[
0,

1
β

)
i = 0,

(
�β�

β(β − 1)
+

i − 1
β

,
i + 1

β

)
i = 1, 2, . . . , �β� − 1,

(
�β�

β(β − 1)
+

�β� − 1
β

,
�β�

β − 1

]
i = �β�.

So one has

Jβ = E0 ∪ S1 ∪ E1 ∪ S2 ∪ E2 ∪ · · · ∪ S�β� ∪ E�β�,

where the union is disjoint and all intervals in the union are lined up in this order
from left to right. In addition

Ik = Sk ∪ Ek ∪ Sk+1 for k = 0, 1, . . . , �β�,

where we adopt the convention that S0 = S�β�+1 = ∅. Let Sβ =
⋃�β�

i=1 Si. Let

Tβ,k(x) = βx − k with k = 0, 1, . . . , �β�.

Then Tβ,k(x) ∈ Jβ if and only if x ∈ Ik = Sk ∪ Ek ∪ Sk+1. Note that

Tβ,δ1

( ∞∑
i=1

δi

βi

)
=

∞∑
i=2

δi

βi−1
= Π((δi)∞i=2).

This implies the following facts (cf. [3, Lemma 1.1; 5, Theorem 2]):

(I) (δi)∞i=1 ∈ Σβ(x) if and only if Tβ,δn ◦ · · · ◦ Tβ,δ1(x) ∈ Jβ for all n ≥ 1.
(II) A finite block of sequence (δi)n

i=1 ∈ {0, 1, . . . , �β�}n appears in a β-expansion
of x if and only if there exist finite digits τ1, . . . , τk from {0, 1, . . . , �β�} such
that Tβ,δn ◦ · · · ◦ Tβ,δ1 ◦ Tβ,τk

◦ · · · ◦ Tβ,τ1(x) ∈ Jβ .
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For x ∈ Jβ and n ∈ N denote

Ĵβ,n(x) = {Tβ,δn ◦ · · · ◦ Tβ,δ1(x) : (δi)∞i=1 ∈ Σβ(x)}

=

{ ∞∑
k=1

δn+k

βk
: (δi)∞i=1 ∈ Σβ(x)

}

and

Ĵβ(x) =
∞⋃

n=0

Ĵβ,n(x) with Ĵβ,0(x) = {x}.

If we use σ to denote the left shift on {0, 1, . . . , �β�}N, then

Ĵβ(x) =
∞⋃

n=0

Ĵβ,n(x) =
∞⋃

n=0

Π(σnΣβ(x)).

Set

Ŝβ(x) = Ĵβ(x) ∩ Sβ .

For a finite sequence e ∈
⋃∞

k=1 Zk we denote by i(e) its initial digit, and by
e∞ the infinite sequence obtained by concatenating e to itself infinite many times.
An infinite sequence (ci)∞i=1 of integers is said eventually periodic if there exist
a ∈

⋃∞
k=0 Zk and b ∈

⋃∞
k=1 Zk such that (ci)∞i=1 = ab∞. Here Z0 consists of empty

sequence.
If Ĵβ(x) =

⋃∞
n=0 Ĵβ,n(x) is finite such that Ŝβ(x) �= ∅, then β is an algebraic

integer determined by some monic polynomial with integer coefficients. In fact, for
this case one can take two distinct eventually periodic sequences (δi) and (εi) from
Σβ(x) with n being the least number such that δj �= εj then |δn − εn| = 1. Thus
the following equality leads to such a monic polynomial:

∞∑
i=1

δi

βi
=

∞∑
i=1

εi

βi
.

As to the finiteness of Ĵβ(x), Bogmér et al. showed in [4] that Ĵβ(1) is finite if β

is a Pisot number. Recently, Baker [3] generalized their result and showed for Pisot
number β, Ĵβ(x) is finite if and only if x ∈ Q(β). However, for a non-Pisot algebraic
integer β it is possible that Ĵβ(x) is finite for some x, e.g., see Examples 3.2 and
3.5. But we have not found a deeper characterization of these xs.

For β > 1 and k ∈ N, a function g(y) is said to be (β, k)-type if there exists an
eventually periodic sequence (di) ∈ ZN such that

g(y) =
∞∑

i=1

diy
i with k = min{i : di �= 0} and g(β−1) = 0.

Obviously, g(y) is well defined for −1 < y < 1. Our main theorem in the present
paper is the following theorem.
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Theorem 1.1. Suppose Ĵβ(x) is finite. Then the following statements are
equivalent:

(i) #Σβ(x) = 2ℵ0 .
(ii) dimH Σβ(x) = limn→∞ 1

n log�β�+1 #Σβ,n(x) > 0.
(iii) There exist a ∈

⋃
n≥0{0, 1, . . . , �β�}n and b, c ∈

⋃
n≥1{0, 1, . . . , �β�}n with

i(b) �= i(c) such that ab∞,ac∞ ∈ Σβ(x).
(iv) There exist an eventually periodic sequence (αj) = δ1 . . . δk(δk+1 . . . δk+�)∞ ∈

Σβ(x) with k ≥ 0, � ≥ 1 and a (β, k + 1)-type function g(y) =
∑∞

i=1 diy
i

such that (αi − di)∞i=1 ∈ {0, 1, . . . , �β�}N is of form (αi − di)∞i=1 = (αi − di)m
i=1

(δk+1 . . . δk+�)∞ with m ≥ k + 1.

This paper is arranged as follows. A graph-directed construction will be
described in Sec. 2. The final section is devoted to the proof of Theorem 1.1.

2. Graph-Directed Construction

We make a graph-directed construction G = (V , E) to describe the set Σβ(x). Let
Ĵβ(x) = {vi}k

i=1 with v1 = x. We take {vi}k
i=1 as the vertex set V . For each vertex

pair vi, vj ∈ V we say e ∈ {0, 1, . . . , �β�} a directed edge starting at vi and termi-
nating at vj if Tβ,e(vi) = vj . Thus each vertex pair vi, vj has at most one directed
edge starting at vi and terminating at vj . And for each vertex vi there exist at least
one and at most two directed edges starting at vi, the later occurs if and only if
vi ∈ Ŝβ(x). The directed edge set E consists of all such possible directed edges e.
For a directed edge e ∈ E we use i(e) and t(e) to denote its starting and terminating
vertices, respectively. Note that an edge e indeed is a triple (i(e), e, t(e)). So it is
possible that a digit e may occur in E many times which stands for distinct edges.

An edge e with i(e) = t(e) is called a self-loop. A finite path on the graph G
is a finite sequence e1e2 . . . en of edges from E such that t(ej) = i(ej+1) for all
1 ≤ j ≤ n − 1. An infinite path on the graph G is an infinite sequence e1e2 . . . of
edges from E such that t(ej) = i(ej+1) for all j ≥ 1. A cycle is a finite path that
starts and terminates at the same vertex. The graph G is called strongly connected if
for each pair of vertices vi and vj there is a finite path starting at vi and terminating
at vj .

From the construction of G it follows that each β-expansion of x can be identified
with an infinite path starting at v1 on G, i.e.

Σβ(x) = {e1e2e3 . . . : | ei ∈ E , i(e1) = v1 and t(ej) = i(ej+1) for all j ≥ 1}.

So Σβ(x) is singleton if and only if Ŝβ(x) = ∅.
The incidence matrix A = (ai,j)k×k of G is a 0 − 1 matrix such that ai,j = 1 if

and only if there exists an e ∈ E with i(e) = vi and t(e) = vj .
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We endow {0, 1, . . . , �β�}N with the metric d(·, ·): for ε = (εi), δ = (δi) ∈
{0, 1, . . . , �β�}N

d(ε, δ) =

{
(�β� + 1)−n if ε �= δ and n = min {i : δi �= εi},
0 if ε = δ.

The following lemma essentially comes from [3, Theorem 5.2].

Lemma 2.1. Suppose that Ĵβ(x) is finite. If the graph G associated to Ĵβ(x) is
strongly connected, then

dimH Σβ(x) = lim
n→∞

log�β�+1 #Σβ,n(x)
n

= log�β�+1 λ.

where λ is the spectral radius of the incidence matrix A = (ai,j)k×k of G.

In fact, according to Perron–Frobenius Theorem λ is an eigenvalue of A which
has a right eigenvector w whose components are all positive. Let w = (w1, . . . , wk)T .
Then for each vi ∈ Ĵβ(x), we have

mini wi

maxi wi
λn ≤ #Σβ,n(vi) ≤

maxi wi

mini wi
λn for each n ∈ N.

The desired results can be obtained by a verbatim textual argument in [3].
A subgraph of G = (V , E) is a tuple (V∗, E∗) where V∗ ⊆ V and E∗ = {e ∈ E :

i(e), t(e) ∈ V∗}. We say a subgraph (V∗, E∗) of G is maximal strongly connected if
it is strongly connected and no strongly connected subgraph (V∗∗, E∗∗) such that
V∗∗ � V∗. Let G̃ be the collection of all maximal strongly connected subgraphs of
G. We have G̃ �= ∅ by the finiteness of Ĵβ(x).

For a H ∈ G̃ we denote by AH the incidence matrix and by λH the spectral
radius of AH.

Proposition 2.2. Suppose that Ĵβ(x) is finite and that G is the graph associated
to Ĵβ(x). Then

dimH Σβ(x) = lim
n→∞

log�β�+1 #Σβ,n(x)
n

= log�β�+1 λ.

where λ is the spectral radius of the incidence matrix A = (ai,j)k×k of G.

Proof. First we have

dimH Σβ(x) ≤ lim
n→∞

log�β�+1 #Σβ,n(x)
n

= log�β�+1 λ.

The former inequality can be verified directly and the later equality is from [18,
Theorem 4.4.4].

Now we take H= (V∗, E∗) ∈ G̃ such that λH = λ. Then dimH Σβ(x)≥ dimH

Σβ(y) with y∈V∗. However we have dimH Σβ(y)= log�β�+1 λH by Lemma 2.1.
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The following theorem shows the relation between cardinality of Σβ(x) and the
graph G.

Theorem 2.3. Suppose that Ĵβ(x) is finite. Let G = (V , E) be the graph associated
to Ĵβ(x) and let G̃ be the collection of all maximal strongly connected subgraphs of
G. Then

(a) #Σβ(x) = 2ℵ0 if and only if there exist a (V∗, E∗) ∈ G̃ and a v ∈ V∗ such that
#{e ∈ E∗ : i(e) = v} = 2;

(b) #Σβ(x)=ℵ0 if and only if for each (V∗, E∗)∈ G̃ we have #{e∈E∗ : i(e) = v}=1
for all v ∈ V∗, and there exists a (V∗∗, E∗∗) ∈ G̃ such that V∗∗ ∩ Ŝβ(x) �= ∅;

(c) #Σβ(x) < ℵ0 if and only if for each (V∗, E∗) ∈ G̃ we have V∗ ∩ Ŝβ(x) = ∅.

Proof. It suffices to prove the sufficiency parts.
(a) Suppose that there exist a (V∗, E∗) ∈ G̃ and a v ∈ V∗ such that #{e ∈ E∗ :

i(e) = v} = 2. Let e1, e2 be distinct edges from E∗ both of which start at v. Let
a1 · · · ak be a path on (V∗, E∗) which connects the vertices t(e1) and v. Let b1 · · · b�

be a path on (V∗, E∗) which connects the vertices t(e2) and v. Then

(e1a1 · · · ak)∞, (e2b1 · · · b�)∞ ∈ Π−1(v). (2.1)

Set a = e1a1 · · · ak and b = e2b1 · · · b�. Thus {a,b}N ⊆ Π−1(v) which implies that
#Σβ(v) = 2ℵ0 and so #Σβ(x) = 2ℵ0 .

(b) Let v ∈ V∗∗∩Ŝβ(x). Let both edges e1 and e2 start at v such that t(e1) ∈ V∗∗

and t(e2) /∈ V∗∗. Denote e1a1 · · · ak is a cycle on (V∗∗, E∗∗), i.e. t(ak) = v. If #V∗∗ =
1, then this cycle is just e1 with i(e1) = t(e1) = v. Then for any (δi) ∈ Π−1(t(e2))

Π−1(v) ⊇ {(e1a1 · · ·ak)�e2 ∗ (δi) : � ∈ N},

which implies that #Π−1(v) ≥ ℵ0 and so #Σβ(x) ≥ ℵ0.
Denote T = E\

⋃
(V∗,E∗)∈G̃ E∗. Now for a (δi) ∈ Σβ(x), By the assumption we

know that each edge from T may appear in (δi) at most one time, and that when
edges e1, e2 from some E∗ appear in (δi), say δk = e1 and δk+� = e2, then the
block δk · · · δk+� is a path in (V∗, E∗) and is uniquely determined by e1, e2 and �.
Therefore #Σβ(x) ≤ ℵ0.

(c) From the assumption it follows that any infinite path surely goes in some
subgraph and then never goes out. Thus Σβ(x) is just a finite set.

From the proof of Theorem 2.3(a) we have the following corollary even without
the finiteness of Ĵβ(x).

Corollary 2.4. If there exist a,b ∈
⋃

k≥1{0, 1, . . . , �β�}k such that i(a) �= i(b) and
Π(a∞) = Π(b∞) = v ∈ Ĵβ(x), then #Σβ(x) = 2ℵ0 .

3. Proof of Theorem 1.1 and Examples

In this section we give the proof of Theorem 1.1 and some examples.
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Proof of Theorem 1.1. First we have that dimH Σβ(x) = limn→∞ 1
n log�β�+1 #

Σβ,n(x) by Proposition 2.2.
(i) ⇒ (ii) By Theorem 2.3(a) one can choose H = (V∗, E∗) ∈ G̃ with #{e ∈ E∗ :

i(e) = v} = 2 for some v ∈ V∗. Thus its incidence matrix AH has spectral radius
λH > 1. Hence dimH Σβ(x) > 0 by Proposition 2.2.

(ii) ⇒ (iii) For this case one has #Σβ(x) = 2ℵ0 and so by Theorem 2.3(a) one
can obtain a v ∈ Ĵβ(x) and b, c ∈

⋃
n≥1{0, 1, . . . , �β�}n with i(b) �= i(c) such that

b∞, c∞ ∈ Π−1(v) (see (2.1)), which implies (iii).
(iii) ⇒ (iv) Denote (αi) = ab∞ = δ1 . . . δk(δk+1 . . . δk+�)∞. Let (di) = ab∞ −

acb∞. Here (γi) − (εi) means that (γi − εi). Then min{i : di �= 0} = k + 1 and
(di) ∈ ZN is an eventually periodic sequence. By letting g(y) =

∑∞
i=1 diy

i one
has

g(β−1) = 0 and (αi − di)∞i=1 = acb∞ ∈ {0, 1, . . . , �β�}N,

where the first equality is obtained by the fact that ab∞, acb∞ ∈ Σβ(x).
(iv) ⇒ (i) We have

(αi − di)m
i=1(δk+1 . . . δk+�)∞ = δ1 . . . δkγ1 . . . γm−k(δk+1 . . . δk+�)∞ ∈ Σβ(x).

Thus δ1 . . . δk(γ1 · · · γm−k)∞ ∈ Σβ(x) with γ1 �= δk+1. Let u = δk+1 . . . δk+� and
v = γ1 · · · γm−k. Thus #Σβ(x) = 2ℵ0 since

Σβ(x) ⊇ {(δ1 . . . δk)(si)∞i=1 : (si)∞i=1 ∈ {u,v}N}.

From the proof of Theorem 1.1 we have the following corollary even without the
finiteness of Ĵβ(x).

Corollary 3.1. We have #Σβ(x) = 2ℵ0 if either (iii) or (iv) in Theorem 1.1 holds.

In the following we give several examples.

Example 3.2. Let β ≈ 1.68042 be the positive root of equation y5 − y4 − y3 − y +
1 = 0. Then β is not Pisot, since y5 − y4 − y3 − y + 1 is the minimal polynomial of
β and has a root in (−∞,−1). One can check that

Ĵβ(1) = {1, β − 1, β2 − β, β3 − β2 − 1, β4 − β3 − β − 1, β2 − β − 1,

β3 − β2 − β, β4 − β3 − β2}

and Ŝβ(1) = {β − 1}.
More exactly we have (recall that Tβ,k(x) = βx−k, k ∈ {0, 1, . . . , �β�} = {0, 1})

1 = v1
Tβ,1−→ v2 = β − 1, β − 1 = v2

Tβ,0−→ v3 = β2 − β,

β2 − β = v3
Tβ,1−→ v4 = β3 − β2 − 1, β3 − β2 − 1 = v4

Tβ,1−→ v5 = β4 − β3 − β − 1,

β4 − β3 − β − 1 = v5
Tβ,0−→ v4 = β3 − β2 − 1, β − 1 = v2

Tβ,1−→ v6 = β2 − β − 1,

β2 − β − 1 = v6
Tβ,0−→ v7 = β3 − β2 − β, β3 − β2 − β = v7

Tβ,0−→ v8 = β4 − β3 − β2,

β4 − β3 − β2,= v8
Tβ,0−→ v2 = β − 1.
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Fig. 1. The graph G associated to Ĵβ(1). G̃ = {(V∗
1 , E∗

1 ), (V∗
2 , E∗

2 )} with V∗
1 = {v4, v5} and V∗

2 =

{v2, v6, v7, v8}, V∗
2 ∩ Ŝβ(1) �= ∅.

By Theorem 2.3(b) we have #Σβ(1) = ℵ0. The graph G is illustrated in Fig. 1.

Example 3.3. Let κ ∈ N and ε ∈ {1, . . . , κ}. Let β ∈ (κ, κ + 1) be the positive
root of the equation y4 − κy3 − εy2 − y + ε = 0. Then #Σβ(1) = 2ℵ0 .

Proof. We first like to point out that there exists β ∈ (κ, κ + 1) such that

β4 − κβ3 − εβ2 − β + ε = 0, or equivalently 1 − κ

β
− ε

β2
− 1

β3
+

ε

β4
= 0. (3.1)

In fact, by letting f(y) = y4 − κy3 − εy2 − y + ε it has that both f(κ) < 0 and
f(κ + 1) > 0 hold for all ε ∈ {1, . . . , κ}. One can check that

(1 − κy − εy2 − y3 + εy4)
∞∑

j=0

y3j = 1 −
∞∑

j=1

αjy
j with (αj)∞j=1 = κ(ε0(κ − ε))∞.

From (3.1) it follows that (αj)∞j=1 = κ(ε0(κ − ε))∞ ∈ Σβ(1). Now let

g(y) = (y2 − y6)(1 − κy − εy2 − y3 + εy4)
∞∑

j=0

y3j

= (y2 − y6)


1 −

∞∑
j=1

αjy
j


 :=

∞∑
i=1

diy
i.

Then g(y) is a (β, 2)-type function and (αi − di)∞i=1 = κ(ε− 1)κκε(κ− ε + 1)00(κ−
ε)(ε0(κ − ε))∞. It follows from Theorem 1.1(iv) (or Corollary 3.1) that #Σβ(1) =
2ℵ0 .
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Fig. 2. The graph G associated to Ĵβ(x). G̃ = {(V∗
1 , E∗

1 ), (V∗
2 , E∗

2 )} with V∗
1 = {v3, v4} and V∗

2 =

{v1, v5, v6, v7, v8, v9, v10, v11}, V∗
2 ∩ Ŝβ(x) �= ∅, x = β−2 + (β3 − β)−1.

Example 3.4. If the greedy and lazy β-expansions of 1 are ε1 . . . εk and
(ε1 . . . εk−1(εk − 1))∞, respectively, then #Σβ(1) = ℵ0.

Proof. By the assumption we have Σβ,k(1) = {(δi)|k : (δi) ∈ Π−1(1)} =
{ε1 . . . εk, ε1 . . . εk−1(εk − 1)}. Thus we have

1 = v1

Tβ,ε1−→ v2

Tβ,ε2−→ v3 · · ·
Tβ,εk−1−→ vk

Tβ,εk−→ vk+1 = 0
Tβ,0−→ vk+1 and vk

Tβ,εk−1−→ v1.

Therefore, #Σβ(1) = ℵ0 by Theorem 2.3(b).

Example 3.5. Let β ≈ 1.65462 be the positive root of y6 − 2y4 − y3 − 1 = 0.
Then β is not Pisot, since y6 − 2y4 − y3 − 1 is the minimal polynomial of β and
y ≈ −1.26493 is also a root. Let x = β−2+(β3−β)−1. The sets Ĵβ(x) = {vi}12

i=1 and
Ŝβ(x) = {v1, v8} are illustrated in Fig. 2. Then #Σβ(x) = ℵ0 by Theorem 2.3(b).
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