International Journal of Number Theory Vol. 12, No. 6 (2016) 1497–1507 © World Scientific Publishing Company DOI: 10.1142/S1793042116500925

On the cardinality of β -expansions of some numbers

Yuru Zou

College of Mathematics and Computational Science Shenzhen University, Shenzhen 518060, P. R. China

Wenxia Li

Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University Shanghai 200241, P. R. China

Jian Lu

College of Mathematics and Computational Science Shenzhen University, Shenzhen 518060, P. R. China jianlu@szu.edu.cn

> Received 21 May 2015 Accepted 27 August 2015 Published 28 October 2015

Let $\beta > 1$. It is well known that every $x \in [0, \lfloor \beta \rfloor/(\beta - 1)]$ has a β -expansion of the form $x = \sum_{k=1}^{\infty} \delta_k \beta^{-k}$ with $\delta_i \in \{0, 1, \dots, \lfloor \beta \rfloor\}$, where $\lfloor \beta \rfloor$ denotes the largest integer not exceeding β . Let $\Sigma_{\beta}(x)$ and $\Sigma_{\beta,n}(x)$ denote the sets of all β -expansions of x and the set of n-prefixes of all β -expansions of x, respectively. We show that $\#\Sigma_{\beta}(x) = 2^{\aleph_0}$, $\dim_H \Sigma_{\beta}(x) > 0$ and $\lim_{n \to \infty} \frac{1}{n} \log \#\Sigma_{\beta,n}(x) > 0$ are equivalent under a certain finiteness condition.

Keywords: β -Expansion; Hausdorff dimension; directed graph.

Mathematics Subject Classification 2010: 11A63, 28A80

1. Introduction

Let $\beta > 1$ be a non-integer. We consider expansions of $x \in J_{\beta} := [0, \lfloor \beta \rfloor/(\beta - 1)]$ of the form

$$x = \sum_{i=1}^{\infty} \frac{\delta_i}{\beta^i}$$
 with $\delta_i \in \{0, 1, \dots, \lfloor \beta \rfloor\},$

where $\lfloor \beta \rfloor$ denotes the largest integer not exceeding β . The infinite sequence $(\delta_i)_{i=1}^{\infty}$ is called a β -expansion of x. We write (δ_i) instead of $(\delta_i)_{i=1}^{\infty}$ for simplicity, except when we want to emphasize the first digit of (δ_i) . The study of expansions in

non-integer bases were pioneered by the papers of Rényi [20] and Parry [19]. Let $\Sigma_{\beta}(x)$ denote the set of all β -expansions of x and $\Sigma_{\beta,n}(x)$ the set of n-prefixes of all β -expansions of x, i.e.

$$\Sigma_{\beta}(x) = \left\{ (\delta_i) \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}} : x = \sum_{i=1}^{\infty} \delta_i \beta^{-i} \right\},$$

$$\Sigma_{\beta, n}(x) = \left\{ (\varepsilon_i)_{i=1}^n \in \{0, 1, \dots, \lfloor \beta \rfloor\}^n : \text{ there exists} \right.$$

$$\left. (\varepsilon_i)_{i=n+1}^{\infty} \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}} \text{ such that } (\varepsilon_i) \in \Sigma_{\beta}(x) \right\}.$$

The set $\Sigma_{\beta}(x)$ plays an important role in the investigation of representations for real numbers in non-integer bases. In the past two decades the set \mathcal{U} of all such $\beta > 1$ for which $\#\Sigma_{\beta}(1) = 1$ has been widely investigated and numerous interesting results have been obtained (see [1, 7–10, 13–15] and references therein). Here and hereafter #A denotes the cardinality of a set A. Recently, the Hausdorff dimension of the set of all points belonging to J_{β} which have a unique β -expansion was calculated in [16, 17, 24].

On the other hand, the cardinality of the set $\Sigma_{\beta}(x)$ also has received a lot of attention. Glendinning and Sidorov [12] showed that the Komornik-Loreti constant (see [1, 13]) is the critical value which separates the cardinality of set $\Sigma_{\beta}(x)$ being uncountable from countable. It was shown in [10] that each $x \in J_{\beta}$ has 2^{\aleph_0} different β -expansions if $\beta \in (1, (1+\sqrt{5})/2)$. This result was strengthened in [6, 21, 22] to get that for any non-integer $\beta > 1$, almost every $x \in J_{\beta}$ has 2^{\aleph_0} distinct β -expansions. Moveover, some similar results also hold in two dimensions [23]. Recently, Feng and Sidorov [11] showed that for any Pisot number $\beta > 1$ there has $\lim_{n\to\infty}\frac{1}{n}\log\#\Sigma_{\beta,n}(x)>0$ for almost every $x\in J_{\beta}$. Here $\lim_{n\to\infty}\frac{1}{n}\log\#\Sigma_{\beta,n}(x)$ is called the growth rate of the set $\Sigma_{\beta,n}(x)$, provided that the limit exists. The growth rate was further investigated by Baker [2, 3]. In [3] Baker showed that under some conditions the growth rate of the set $\Sigma_{\beta,n}(x)$ and Hausdorff dimension of the set $\Sigma_{\beta}(x)$ are equal and explicitly calculable. In fact, all the quantities $\#\Sigma_{\beta}(x)$, $\lim_{n\to\infty}\frac{1}{n}\log\#\Sigma_{\beta,n}(x)$ and $\dim_H\Sigma_{\beta}(x)$ reveal the complexity of the set $\Sigma_{\beta}(x)$. In this paper we are mainly concerned with the relation among them. We show that under a certain finiteness condition, the cases of $\#\Sigma_{\beta}(x) = 2^{\aleph_0}$, $\dim_H(\Sigma_{\beta}(x)) > 0$ and $\lim_{n\to\infty} \frac{1}{n} \log \# \Sigma_{\beta,n}(x) > 0$ are equivalent.

As one knows the set $J_{\beta} = [0, \lfloor \beta \rfloor / (\beta - 1)]$ can be regarded as the self-similar set generated by the iterated function system (IFS) $\{f_k(x) = \beta^{-1}(x+k) : k = 0, 1, \ldots, \lfloor \beta \rfloor \}$, i.e.

$$J_{\beta} = \bigcup_{k=0}^{\lfloor \beta \rfloor} f_k(J_{\beta}).$$

As usual, a coding mapping $\Pi: \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}} \to J_{\beta}$ is then defined by

$$\Pi((\delta_i)) = \sum_{i=1}^{\infty} \frac{\delta_i}{\beta^i} \quad \text{for } (\delta_i) \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}.$$

Then we have that Π is surjective and for each $x \in J_{\beta}$ and $n \in \mathbb{N}$

$$\Sigma_{\beta}(x) = \Pi^{-1}(x)$$
 and $\Sigma_{\beta,n}(x) = \{(\delta_i) | n : (\delta_i) \in \Pi^{-1}(x)\},$

where $(\delta_i) \mid n = (\delta_i)_{i=1}^n$ is the *n*-prefix of (δ_i) .

Denote $I_k = f_k(J_\beta) = \left[\frac{k}{\beta}, \frac{k}{\beta} + \frac{\lfloor \beta \rfloor}{\beta(\beta-1)}\right]$ and partition the interval $J_\beta = [0, \lfloor \beta \rfloor/(\beta-1)]$ into switch regions S_i and equality regions E_i by letting

$$S_i = I_{i-1} \cap I_i = \left[\frac{i}{\beta}, \frac{\lfloor \beta \rfloor}{\beta(\beta - 1)} + \frac{i - 1}{\beta}\right] \neq \emptyset \quad \text{for } i = 1, 2, \dots, \lfloor \beta \rfloor$$

and

$$E_i = I_i \setminus \bigcup_{k=1}^{\lfloor \beta \rfloor} S_k$$
 for $i = 0, 1, \dots, \lfloor \beta \rfloor$.

Thus we have

$$E_{i} = \begin{cases} \left[0, \frac{1}{\beta}\right) & i = 0, \\ \left(\frac{\lfloor \beta \rfloor}{\beta(\beta - 1)} + \frac{i - 1}{\beta}, \frac{i + 1}{\beta}\right) & i = 1, 2, \dots, \lfloor \beta \rfloor - 1, \\ \left(\frac{\lfloor \beta \rfloor}{\beta(\beta - 1)} + \frac{\lfloor \beta \rfloor - 1}{\beta}, \frac{\lfloor \beta \rfloor}{\beta - 1}\right] & i = \lfloor \beta \rfloor. \end{cases}$$

So one has

$$J_{\beta} = E_0 \cup S_1 \cup E_1 \cup S_2 \cup E_2 \cup \cdots \cup S_{\lfloor \beta \rfloor} \cup E_{\lfloor \beta \rfloor},$$

where the union is disjoint and all intervals in the union are lined up in this order from left to right. In addition

$$I_k = S_k \cup E_k \cup S_{k+1}$$
 for $k = 0, 1, \dots, \lfloor \beta \rfloor$,

where we adopt the convention that $S_0 = S_{\lfloor \beta \rfloor + 1} = \emptyset$. Let $S_\beta = \bigcup_{i=1}^{\lfloor \beta \rfloor} S_i$. Let

$$T_{\beta,k}(x) = \beta x - k \text{ with } k = 0, 1, \dots, \lfloor \beta \rfloor.$$

Then $T_{\beta,k}(x) \in J_{\beta}$ if and only if $x \in I_k = S_k \cup E_k \cup S_{k+1}$. Note that

$$T_{\beta,\delta_1}\left(\sum_{i=1}^{\infty} \frac{\delta_i}{\beta^i}\right) = \sum_{i=2}^{\infty} \frac{\delta_i}{\beta^{i-1}} = \Pi((\delta_i)_{i=2}^{\infty}).$$

This implies the following facts (cf. [3, Lemma 1.1; 5, Theorem 2]):

- (I) $(\delta_i)_{i=1}^{\infty} \in \Sigma_{\beta}(x)$ if and only if $T_{\beta,\delta_n} \circ \cdots \circ T_{\beta,\delta_1}(x) \in J_{\beta}$ for all $n \geq 1$.
- (II) A finite block of sequence $(\delta_i)_{i=1}^n \in \{0, 1, \dots, \lfloor \beta \rfloor\}^n$ appears in a β -expansion of x if and only if there exist finite digits τ_1, \dots, τ_k from $\{0, 1, \dots, \lfloor \beta \rfloor\}$ such that $T_{\beta, \delta_n} \circ \dots \circ T_{\beta, \delta_1} \circ T_{\beta, \tau_k} \circ \dots \circ T_{\beta, \tau_1}(x) \in J_{\beta}$.

For $x \in J_{\beta}$ and $n \in \mathbb{N}$ denote

$$\hat{J}_{\beta,n}(x) = \{ T_{\beta,\delta_n} \circ \dots \circ T_{\beta,\delta_1}(x) : (\delta_i)_{i=1}^{\infty} \in \Sigma_{\beta}(x) \}$$

$$= \left\{ \sum_{k=1}^{\infty} \frac{\delta_{n+k}}{\beta^k} : (\delta_i)_{i=1}^{\infty} \in \Sigma_{\beta}(x) \right\}$$

and

$$\hat{J}_{\beta}(x) = \bigcup_{n=0}^{\infty} \hat{J}_{\beta,n}(x) \text{ with } \hat{J}_{\beta,0}(x) = \{x\}.$$

If we use σ to denote the left shift on $\{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}$, then

$$\hat{J}_{\beta}(x) = \bigcup_{n=0}^{\infty} \hat{J}_{\beta,n}(x) = \bigcup_{n=0}^{\infty} \Pi(\sigma^n \Sigma_{\beta}(x)).$$

Set

$$\hat{S}_{\beta}(x) = \hat{J}_{\beta}(x) \cap S_{\beta}.$$

For a finite sequence $\mathbf{e} \in \bigcup_{k=1}^{\infty} \mathbb{Z}^k$ we denote by $\mathbf{i}(\mathbf{e})$ its initial digit, and by \mathbf{e}^{∞} the infinite sequence obtained by concatenating \mathbf{e} to itself infinite many times. An infinite sequence $(c_i)_{i=1}^{\infty}$ of integers is said eventually periodic if there exist $\mathbf{a} \in \bigcup_{k=0}^{\infty} \mathbb{Z}^k$ and $\mathbf{b} \in \bigcup_{k=1}^{\infty} \mathbb{Z}^k$ such that $(c_i)_{i=1}^{\infty} = \mathbf{ab}^{\infty}$. Here \mathbb{Z}^0 consists of empty sequence.

If $\hat{J}_{\beta}(x) = \bigcup_{n=0}^{\infty} \hat{J}_{\beta,n}(x)$ is finite such that $\hat{S}_{\beta}(x) \neq \emptyset$, then β is an algebraic integer determined by some monic polynomial with integer coefficients. In fact, for this case one can take two distinct eventually periodic sequences (δ_i) and (ε_i) from $\Sigma_{\beta}(x)$ with n being the least number such that $\delta_j \neq \varepsilon_j$ then $|\delta_n - \varepsilon_n| = 1$. Thus the following equality leads to such a monic polynomial:

$$\sum_{i=1}^{\infty} \frac{\delta_i}{\beta^i} = \sum_{i=1}^{\infty} \frac{\varepsilon_i}{\beta^i}.$$

As to the finiteness of $\hat{J}_{\beta}(x)$, Bogmér et al. showed in [4] that $\hat{J}_{\beta}(1)$ is finite if β is a Pisot number. Recently, Baker [3] generalized their result and showed for Pisot number β , $\hat{J}_{\beta}(x)$ is finite if and only if $x \in \mathbb{Q}(\beta)$. However, for a non-Pisot algebraic integer β it is possible that $\hat{J}_{\beta}(x)$ is finite for some x, e.g., see Examples 3.2 and 3.5. But we have not found a deeper characterization of these xs.

For $\beta > 1$ and $k \in \mathbb{N}$, a function g(y) is said to be (β, k) -type if there exists an eventually periodic sequence $(d_i) \in \mathbb{Z}^{\mathbb{N}}$ such that

$$g(y) = \sum_{i=1}^{\infty} d_i y^i$$
 with $k = \min\{i : d_i \neq 0\}$ and $g(\beta^{-1}) = 0$.

Obviously, g(y) is well defined for -1 < y < 1. Our main theorem in the present paper is the following theorem.

Theorem 1.1. Suppose $\hat{J}_{\beta}(x)$ is finite. Then the following statements are equivalent:

- (i) $\#\Sigma_{\beta}(x) = 2^{\aleph_0}$.
- (ii) $\dim_H \Sigma_{\beta}(x) = \lim_{n \to \infty} \frac{1}{n} \log_{\lfloor \beta \rfloor + 1} \# \Sigma_{\beta, n}(x) > 0.$
- (iii) There exist $\mathbf{a} \in \bigcup_{n\geq 0} \{0,1,\ldots,\lfloor \beta \rfloor\}^n$ and $\mathbf{b}, \mathbf{c} \in \bigcup_{n\geq 1} \{0,1,\ldots,\lfloor \beta \rfloor\}^n$ with $\mathbf{i}(\mathbf{b}) \neq \mathbf{i}(\mathbf{c})$ such that $\mathbf{a}\mathbf{b}^{\infty}, \mathbf{a}\mathbf{c}^{\infty} \in \Sigma_{\beta}(x)$.
- (iv) There exist an eventually periodic sequence $(\alpha_j) = \delta_1 \dots \delta_k (\delta_{k+1} \dots \delta_{k+\ell})^{\infty} \in \Sigma_{\beta}(x)$ with $k \geq 0$, $\ell \geq 1$ and a $(\beta, k+1)$ -type function $g(y) = \sum_{i=1}^{\infty} d_i y^i$ such that $(\alpha_i d_i)_{i=1}^{\infty} \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}$ is of form $(\alpha_i d_i)_{i=1}^{\infty} = (\alpha_i d_i)_{i=1}^{m}$ $(\delta_{k+1} \dots \delta_{k+\ell})^{\infty}$ with $m \geq k+1$.

This paper is arranged as follows. A graph-directed construction will be described in Sec. 2. The final section is devoted to the proof of Theorem 1.1.

2. Graph-Directed Construction

We make a graph-directed construction $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ to describe the set $\Sigma_{\beta}(x)$. Let $\hat{J}_{\beta}(x) = \{v_i\}_{i=1}^k$ with $v_1 = x$. We take $\{v_i\}_{i=1}^k$ as the vertex set \mathcal{V} . For each vertex pair $v_i, v_j \in \mathcal{V}$ we say $e \in \{0, 1, \ldots, \lfloor \beta \rfloor\}$ a directed edge starting at v_i and terminating at v_j if $T_{\beta,e}(v_i) = v_j$. Thus each vertex pair v_i, v_j has at most one directed edge starting at v_i and terminating at v_j . And for each vertex v_i there exist at least one and at most two directed edges starting at v_i , the later occurs if and only if $v_i \in \hat{S}_{\beta}(x)$. The directed edge set \mathcal{E} consists of all such possible directed edges e. For a directed edge $e \in \mathcal{E}$ we use $\mathbf{i}(e)$ and $\mathbf{t}(e)$ to denote its starting and terminating vertices, respectively. Note that an edge e indeed is a triple $(\mathbf{i}(e), e, \mathbf{t}(e))$. So it is possible that a digit e may occur in \mathcal{E} many times which stands for distinct edges.

An edge e with $\mathbf{i}(e) = \mathbf{t}(e)$ is called a *self-loop*. A finite path on the graph \mathcal{G} is a finite sequence $e_1e_2...e_n$ of edges from \mathcal{E} such that $\mathbf{t}(e_j) = \mathbf{i}(e_{j+1})$ for all $1 \leq j \leq n-1$. An infinite path on the graph \mathcal{G} is an infinite sequence $e_1e_2...$ of edges from \mathcal{E} such that $\mathbf{t}(e_j) = \mathbf{i}(e_{j+1})$ for all $j \geq 1$. A cycle is a finite path that starts and terminates at the same vertex. The graph \mathcal{G} is called strongly connected if for each pair of vertices v_i and v_j there is a finite path starting at v_i and terminating at v_j .

From the construction of \mathcal{G} it follows that each β -expansion of x can be identified with an infinite path starting at v_1 on \mathcal{G} , i.e.

$$\Sigma_{\beta}(x) = \{e_1 e_2 e_3 \dots : | e_i \in \mathcal{E}, \mathbf{i}(e_1) = v_1 \text{ and } \mathbf{t}(e_j) = \mathbf{i}(e_{j+1}) \text{ for all } j \ge 1\}.$$

So $\Sigma_{\beta}(x)$ is singleton if and only if $\hat{S}_{\beta}(x) = \emptyset$.

The incidence matrix $A = (a_{i,j})_{k \times k}$ of \mathcal{G} is a 0-1 matrix such that $a_{i,j} = 1$ if and only if there exists an $e \in \mathcal{E}$ with $\mathbf{i}(e) = v_i$ and $\mathbf{t}(e) = v_j$.

We endow $\{0, 1, ..., \lfloor \beta \rfloor\}^{\mathbb{N}}$ with the metric $d(\cdot, \cdot)$: for $\varepsilon = (\varepsilon_i), \delta = (\delta_i) \in \{0, 1, ..., \lfloor \beta \rfloor\}^{\mathbb{N}}$

$$d(\varepsilon, \delta) = \begin{cases} (\lfloor \beta \rfloor + 1)^{-n} & \text{if } \varepsilon \neq \delta \text{ and } n = \min\{i : \delta_i \neq \varepsilon_i\}, \\ 0 & \text{if } \varepsilon = \delta. \end{cases}$$

The following lemma essentially comes from [3, Theorem 5.2].

Lemma 2.1. Suppose that $\hat{J}_{\beta}(x)$ is finite. If the graph \mathcal{G} associated to $\hat{J}_{\beta}(x)$ is strongly connected, then

$$\dim_H \Sigma_{\beta}(x) = \lim_{n \to \infty} \frac{\log_{\lfloor \beta \rfloor + 1} \# \Sigma_{\beta, n}(x)}{n} = \log_{\lfloor \beta \rfloor + 1} \lambda.$$

where λ is the spectral radius of the incidence matrix $A = (a_{i,j})_{k \times k}$ of \mathcal{G} .

In fact, according to Perron–Frobenius Theorem λ is an eigenvalue of A which has a right eigenvector w whose components are all positive. Let $w = (w_1, \dots, w_k)^T$. Then for each $v_i \in \hat{J}_{\beta}(x)$, we have

$$\frac{\min_{i} w_{i}}{\max_{i} w_{i}} \lambda^{n} \leq \# \Sigma_{\beta, n}(v_{i}) \leq \frac{\max_{i} w_{i}}{\min_{i} w_{i}} \lambda^{n} \quad \text{for each } n \in \mathbb{N}.$$

The desired results can be obtained by a verbatim textual argument in [3].

A subgraph of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a tuple $(\mathcal{V}^*, \mathcal{E}^*)$ where $\mathcal{V}^* \subseteq \mathcal{V}$ and $\mathcal{E}^* = \{e \in \mathcal{E} : \mathbf{i}(e), \mathbf{t}(e) \in \mathcal{V}^*\}$. We say a subgraph $(\mathcal{V}^*, \mathcal{E}^*)$ of \mathcal{G} is maximal strongly connected if it is strongly connected and no strongly connected subgraph $(\mathcal{V}^{**}, \mathcal{E}^{**})$ such that $\mathcal{V}^{**} \supseteq \mathcal{V}^*$. Let $\tilde{\mathcal{G}}$ be the collection of all maximal strongly connected subgraphs of \mathcal{G} . We have $\tilde{\mathcal{G}} \neq \emptyset$ by the finiteness of $\hat{J}_{\beta}(x)$.

For a $\mathcal{H} \in \tilde{\mathcal{G}}$ we denote by $A_{\mathcal{H}}$ the incidence matrix and by $\lambda_{\mathcal{H}}$ the spectral radius of $A_{\mathcal{H}}$.

Proposition 2.2. Suppose that $\hat{J}_{\beta}(x)$ is finite and that \mathcal{G} is the graph associated to $\hat{J}_{\beta}(x)$. Then

$$\dim_H \Sigma_{\beta}(x) = \lim_{n \to \infty} \frac{\log_{\lfloor \beta \rfloor + 1} \# \Sigma_{\beta, n}(x)}{n} = \log_{\lfloor \beta \rfloor + 1} \lambda.$$

where λ is the spectral radius of the incidence matrix $A = (a_{i,j})_{k \times k}$ of \mathcal{G} .

Proof. First we have

$$\dim_H \Sigma_{\beta}(x) \leq \lim_{n \to \infty} \frac{\log_{\lfloor \beta \rfloor + 1} \# \Sigma_{\beta, n}(x)}{n} = \log_{\lfloor \beta \rfloor + 1} \lambda.$$

The former inequality can be verified directly and the later equality is from [18, Theorem 4.4.4].

Now we take $\mathcal{H} = (\mathcal{V}^*, \mathcal{E}^*) \in \tilde{\mathcal{G}}$ such that $\lambda_{\mathcal{H}} = \lambda$. Then $\dim_H \Sigma_{\beta}(x) \geq \dim_H \Sigma_{\beta}(y)$ with $y \in \mathcal{V}^*$. However we have $\dim_H \Sigma_{\beta}(y) = \log_{|\beta|+1} \lambda_{\mathcal{H}}$ by Lemma 2.1. \square

The following theorem shows the relation between cardinality of $\Sigma_{\beta}(x)$ and the graph \mathcal{G} .

Theorem 2.3. Suppose that $\hat{J}_{\beta}(x)$ is finite. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be the graph associated to $\hat{J}_{\beta}(x)$ and let $\tilde{\mathcal{G}}$ be the collection of all maximal strongly connected subgraphs of \mathcal{G} . Then

- (a) $\#\Sigma_{\beta}(x) = 2^{\aleph_0}$ if and only if there exist a $(\mathcal{V}^*, \mathcal{E}^*) \in \tilde{\mathcal{G}}$ and a $v \in \mathcal{V}^*$ such that $\#\{e \in \mathcal{E}^* : \mathbf{i}(e) = v\} = 2;$
- (b) $\#\Sigma_{\beta}(x) = \aleph_0$ if and only if for each $(\mathcal{V}^*, \mathcal{E}^*) \in \tilde{\mathcal{G}}$ we have $\#\{e \in \mathcal{E}^* : \mathbf{i}(e) = v\} = 1$ for all $v \in \mathcal{V}^*$, and there exists a $(\mathcal{V}^{**}, \mathcal{E}^{**}) \in \tilde{\mathcal{G}}$ such that $\mathcal{V}^{**} \cap \hat{S}_{\beta}(x) \neq \emptyset$;
- (c) $\#\Sigma_{\beta}(x) < \aleph_0$ if and only if for each $(\mathcal{V}^*, \mathcal{E}^*) \in \tilde{\mathcal{G}}$ we have $\mathcal{V}^* \cap \hat{S}_{\beta}(x) = \emptyset$.

Proof. It suffices to prove the sufficiency parts.

(a) Suppose that there exist a $(\mathcal{V}^*, \mathcal{E}^*) \in \tilde{\mathcal{G}}$ and a $v \in \mathcal{V}^*$ such that $\#\{e \in \mathcal{E}^* : e \in$ $\mathbf{i}(e) = v$ = 2. Let e_1, e_2 be distinct edges from \mathcal{E}^* both of which start at v. Let $a_1 \cdots a_k$ be a path on $(\mathcal{V}^*, \mathcal{E}^*)$ which connects the vertices $\mathbf{t}(e_1)$ and v. Let $b_1 \cdots b_\ell$ be a path on $(\mathcal{V}^*, \mathcal{E}^*)$ which connects the vertices $\mathbf{t}(e_2)$ and v. Then

$$(e_1 a_1 \cdots a_k)^{\infty}, (e_2 b_1 \cdots b_{\ell})^{\infty} \in \Pi^{-1}(v).$$
 (2.1)

Set $\mathbf{a} = e_1 a_1 \cdots a_k$ and $\mathbf{b} = e_2 b_1 \cdots b_\ell$. Thus $\{\mathbf{a}, \mathbf{b}\}^{\mathbb{N}} \subseteq \Pi^{-1}(v)$ which implies that $\#\Sigma_{\beta}(v) = 2^{\aleph_0}$ and so $\#\Sigma_{\beta}(x) = 2^{\aleph_0}$.

(b) Let $v \in \mathcal{V}^{**} \cap \hat{S}_{\beta}(x)$. Let both edges e_1 and e_2 start at v such that $\mathbf{t}(e_1) \in \mathcal{V}^{**}$ and $\mathbf{t}(e_2) \notin \mathcal{V}^{**}$. Denote $e_1 a_1 \cdots a_k$ is a cycle on $(\mathcal{V}^{**}, \mathcal{E}^{**})$, i.e. $\mathbf{t}(a_k) = v$. If $\#\mathcal{V}^{**} = v$ 1, then this cycle is just e_1 with $\mathbf{i}(e_1) = \mathbf{t}(e_1) = v$. Then for any $(\delta_i) \in \Pi^{-1}(\mathbf{t}(e_2))$

$$\Pi^{-1}(v) \supseteq \{(e_1 a_1 \cdots a_k)^{\ell} e_2 * (\delta_i) : \ell \in \mathbb{N}\},\$$

which implies that $\#\Pi^{-1}(v) \geq \aleph_0$ and so $\#\Sigma_{\beta}(x) \geq \aleph_0$.

Denote $\mathcal{T} = \mathcal{E} \setminus \bigcup_{(\mathcal{V}^*, \mathcal{E}^*) \in \tilde{\mathcal{G}}} \mathcal{E}^*$. Now for a $(\delta_i) \in \Sigma_{\beta}(x)$, By the assumption we know that each edge from T may appear in (δ_i) at most one time, and that when edges e_1, e_2 from some \mathcal{E}^* appear in (δ_i) , say $\delta_k = e_1$ and $\delta_{k+\ell} = e_2$, then the block $\delta_k \cdots \delta_{k+\ell}$ is a path in $(\mathcal{V}^*, \mathcal{E}^*)$ and is uniquely determined by e_1, e_2 and ℓ . Therefore $\#\Sigma_{\beta}(x) \leq \aleph_0$.

(c) From the assumption it follows that any infinite path surely goes in some subgraph and then never goes out. Thus $\Sigma_{\beta}(x)$ is just a finite set.

From the proof of Theorem 2.3(a) we have the following corollary even without the finiteness of $J_{\beta}(x)$.

Corollary 2.4. If there exist $\mathbf{a}, \mathbf{b} \in \bigcup_{k \geq 1} \{0, 1, \dots, \lfloor \beta \rfloor\}^k$ such that $\mathbf{i}(\mathbf{a}) \neq \mathbf{i}(\mathbf{b})$ and $\Pi(\mathbf{a}^{\infty}) = \Pi(\mathbf{b}^{\infty}) = v \in \hat{J}_{\beta}(x), \text{ then } \#\Sigma_{\beta}(x) = 2^{\aleph_0}.$

3. Proof of Theorem 1.1 and Examples

In this section we give the proof of Theorem 1.1 and some examples.

Proof of Theorem 1.1. First we have that $\dim_H \Sigma_{\beta}(x) = \lim_{n \to \infty} \frac{1}{n} \log_{\lfloor \beta \rfloor + 1} \# \Sigma_{\beta,n}(x)$ by Proposition 2.2.

- (i) \Rightarrow (ii) By Theorem 2.3(a) one can choose $\mathcal{H} = (\mathcal{V}^*, \mathcal{E}^*) \in \tilde{\mathcal{G}}$ with $\#\{e \in \mathcal{E}^* : \mathbf{i}(e) = v\} = 2$ for some $v \in \mathcal{V}^*$. Thus its incidence matrix $A_{\mathcal{H}}$ has spectral radius $\lambda_{\mathcal{H}} > 1$. Hence $\dim_H \Sigma_{\beta}(x) > 0$ by Proposition 2.2.
- (ii) \Rightarrow (iii) For this case one has $\#\Sigma_{\beta}(x) = 2^{\aleph_0}$ and so by Theorem 2.3(a) one can obtain a $v \in \hat{J}_{\beta}(x)$ and $\mathbf{b}, \mathbf{c} \in \bigcup_{n \geq 1} \{0, 1, \dots, \lfloor \beta \rfloor\}^n$ with $\mathbf{i}(\mathbf{b}) \neq \mathbf{i}(\mathbf{c})$ such that $\mathbf{b}^{\infty}, \mathbf{c}^{\infty} \in \Pi^{-1}(v)$ (see (2.1)), which implies (iii).
- (iii) \Rightarrow (iv) Denote $(\alpha_i) = \mathbf{ab}^{\infty} = \delta_1 \dots \delta_k (\delta_{k+1} \dots \delta_{k+\ell})^{\infty}$. Let $(d_i) = \mathbf{ab}^{\infty} \mathbf{acb}^{\infty}$. Here $(\gamma_i) (\varepsilon_i)$ means that $(\gamma_i \varepsilon_i)$. Then $\min\{i : d_i \neq 0\} = k+1$ and $(d_i) \in \mathbb{Z}^{\mathbb{N}}$ is an eventually periodic sequence. By letting $g(y) = \sum_{i=1}^{\infty} d_i y^i$ one has

$$g(\beta^{-1}) = 0$$
 and $(\alpha_i - d_i)_{i=1}^{\infty} = \mathbf{acb}^{\infty} \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}$,

where the first equality is obtained by the fact that \mathbf{ab}^{∞} , $\mathbf{acb}^{\infty} \in \Sigma_{\beta}(x)$.

 $(iv) \Rightarrow (i)$ We have

$$(\alpha_i - d_i)_{i=1}^m (\delta_{k+1} \dots \delta_{k+\ell})^{\infty} = \delta_1 \dots \delta_k \gamma_1 \dots \gamma_{m-k} (\delta_{k+1} \dots \delta_{k+\ell})^{\infty} \in \Sigma_{\beta}(x).$$

Thus $\delta_1 \dots \delta_k (\gamma_1 \dots \gamma_{m-k})^{\infty} \in \Sigma_{\beta}(x)$ with $\gamma_1 \neq \delta_{k+1}$. Let $\mathbf{u} = \delta_{k+1} \dots \delta_{k+\ell}$ and $\mathbf{v} = \gamma_1 \dots \gamma_{m-k}$. Thus $\#\Sigma_{\beta}(x) = 2^{\aleph_0}$ since

$$\Sigma_{\beta}(x) \supseteq \{(\delta_1 \dots \delta_k)(s_i)_{i=1}^{\infty} : (s_i)_{i=1}^{\infty} \in \{\mathbf{u}, \mathbf{v}\}^{\mathbb{N}}\}.$$

From the proof of Theorem 1.1 we have the following corollary even without the finiteness of $\hat{J}_{\beta}(x)$.

Corollary 3.1. We have $\#\Sigma_{\beta}(x) = 2^{\aleph_0}$ if either (iii) or (iv) in Theorem 1.1 holds.

In the following we give several examples.

Example 3.2. Let $\beta \approx 1.68042$ be the positive root of equation $y^5 - y^4 - y^3 - y + 1 = 0$. Then β is not Pisot, since $y^5 - y^4 - y^3 - y + 1$ is the minimal polynomial of β and has a root in $(-\infty, -1)$. One can check that

$$\hat{J}_{\beta}(1) = \{1, \beta - 1, \beta^2 - \beta, \beta^3 - \beta^2 - 1, \beta^4 - \beta^3 - \beta - 1, \beta^2 - \beta - 1, \beta^4 - \beta^3 - \beta^2 - \beta, \beta^4 - \beta^3 - \beta^2\}$$

and $\hat{S}_{\beta}(1) = \{\beta - 1\}.$

More exactly we have (recall that $T_{\beta,k}(x) = \beta x - k, k \in \{0, 1, \dots, \lfloor \beta \rfloor\} = \{0, 1\}$)

$$1 = v_1 \xrightarrow{T_{\beta,1}} v_2 = \beta - 1, \qquad \beta - 1 = v_2 \xrightarrow{T_{\beta,0}} v_3 = \beta^2 - \beta,$$

$$\beta^2 - \beta = v_3 \xrightarrow{T_{\beta,1}} v_4 = \beta^3 - \beta^2 - 1, \qquad \beta^3 - \beta^2 - 1 = v_4 \xrightarrow{T_{\beta,1}} v_5 = \beta^4 - \beta^3 - \beta - 1,$$

$$\beta^4 - \beta^3 - \beta - 1 = v_5 \xrightarrow{T_{\beta,0}} v_4 = \beta^3 - \beta^2 - 1, \qquad \beta - 1 = v_2 \xrightarrow{T_{\beta,1}} v_6 = \beta^2 - \beta - 1,$$

$$\beta^2 - \beta - 1 = v_6 \xrightarrow{T_{\beta,0}} v_7 = \beta^3 - \beta^2 - \beta, \qquad \beta^3 - \beta^2 - \beta = v_7 \xrightarrow{T_{\beta,0}} v_8 = \beta^4 - \beta^3 - \beta^2,$$

$$\beta^4 - \beta^3 - \beta^2 = v_8 \xrightarrow{T_{\beta,0}} v_2 = \beta - 1.$$

Fig. 1. The graph \mathcal{G} associated to $\hat{J}_{\beta}(1)$. $\tilde{\mathcal{G}} = \{(\mathcal{V}_{1}^{*}, \mathcal{E}_{1}^{*}), (\mathcal{V}_{2}^{*}, \mathcal{E}_{2}^{*})\}$ with $\mathcal{V}_{1}^{*} = \{v_{4}, v_{5}\}$ and $\mathcal{V}_{2}^{*} = \{v_{2}, v_{6}, v_{7}, v_{8}\}, \mathcal{V}_{2}^{*} \cap \hat{S}_{\beta}(1) \neq \emptyset$.

By Theorem 2.3(b) we have $\#\Sigma_{\beta}(1) = \aleph_0$. The graph \mathcal{G} is illustrated in Fig. 1.

Example 3.3. Let $\kappa \in \mathbb{N}$ and $\epsilon \in \{1, ..., \kappa\}$. Let $\beta \in (\kappa, \kappa + 1)$ be the positive root of the equation $y^4 - \kappa y^3 - \epsilon y^2 - y + \epsilon = 0$. Then $\#\Sigma_{\beta}(1) = 2^{\aleph_0}$.

Proof. We first like to point out that there exists $\beta \in (\kappa, \kappa + 1)$ such that

$$\beta^4 - \kappa \beta^3 - \epsilon \beta^2 - \beta + \epsilon = 0$$
, or equivalently $1 - \frac{\kappa}{\beta} - \frac{\epsilon}{\beta^2} - \frac{1}{\beta^3} + \frac{\epsilon}{\beta^4} = 0$. (3.1)

In fact, by letting $f(y) = y^4 - \kappa y^3 - \epsilon y^2 - y + \epsilon$ it has that both $f(\kappa) < 0$ and $f(\kappa + 1) > 0$ hold for all $\epsilon \in \{1, \ldots, \kappa\}$. One can check that

$$(1 - \kappa y - \epsilon y^2 - y^3 + \epsilon y^4) \sum_{j=0}^{\infty} y^{3j} = 1 - \sum_{j=1}^{\infty} \alpha_j y^j \text{ with } (\alpha_j)_{j=1}^{\infty} = \kappa (\epsilon 0(\kappa - \epsilon))^{\infty}.$$

From (3.1) it follows that $(\alpha_j)_{j=1}^{\infty} = \kappa(\epsilon 0(\kappa - \epsilon))^{\infty} \in \Sigma_{\beta}(1)$. Now let

$$g(y) = (y^2 - y^6)(1 - \kappa y - \epsilon y^2 - y^3 + \epsilon y^4) \sum_{j=0}^{\infty} y^{3j}$$
$$= (y^2 - y^6) \left(1 - \sum_{j=1}^{\infty} \alpha_j y^j\right) := \sum_{i=1}^{\infty} d_i y^i.$$

Then g(y) is a $(\beta, 2)$ -type function and $(\alpha_i - d_i)_{i=1}^{\infty} = \kappa(\epsilon - 1)\kappa\kappa\epsilon(\kappa - \epsilon + 1)00(\kappa - \epsilon)(\epsilon 0(\kappa - \epsilon))^{\infty}$. It follows from Theorem 1.1(iv) (or Corollary 3.1) that $\#\Sigma_{\beta}(1) = 2^{\aleph_0}$.

Fig. 2. The graph \mathcal{G} associated to $\hat{J}_{\beta}(x)$. $\tilde{\mathcal{G}} = \{(\mathcal{V}_{1}^{*}, \mathcal{E}_{1}^{*}), (\mathcal{V}_{2}^{*}, \mathcal{E}_{2}^{*})\}$ with $\mathcal{V}_{1}^{*} = \{v_{3}, v_{4}\}$ and $\mathcal{V}_{2}^{*} = \{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}\}, \mathcal{V}_{2}^{*} \cap \hat{S}_{\beta}(x) \neq \emptyset, x = \beta^{-2} + (\beta^{3} - \beta)^{-1}$.

Example 3.4. If the greedy and lazy β -expansions of 1 are $\varepsilon_1 \dots \varepsilon_k$ and $(\varepsilon_1 \dots \varepsilon_{k-1}(\varepsilon_k - 1))^{\infty}$, respectively, then $\#\Sigma_{\beta}(1) = \aleph_0$.

Proof. By the assumption we have $\Sigma_{\beta,k}(1) = \{(\delta_i)|k: (\delta_i) \in \Pi^{-1}(1)\} = \{\varepsilon_1 \dots \varepsilon_k, \varepsilon_1 \dots \varepsilon_{k-1}(\varepsilon_k - 1)\}$. Thus we have

$$1 = v_1 \xrightarrow{T_{\beta,\varepsilon_1}} v_2 \xrightarrow{T_{\beta,\varepsilon_2}} v_3 \cdots \xrightarrow{T_{\beta,\varepsilon_{k-1}}} v_k \xrightarrow{T_{\beta,\varepsilon_k}} v_{k+1} = 0 \xrightarrow{T_{\beta,0}} v_{k+1} \quad \text{and} \quad v_k \xrightarrow{T_{\beta,\varepsilon_k}-1} v_1.$$

Therefore,
$$\#\Sigma_{\beta}(1) = \aleph_0$$
 by Theorem 2.3(b).

Example 3.5. Let $\beta \approx 1.65462$ be the positive root of $y^6 - 2y^4 - y^3 - 1 = 0$. Then β is not Pisot, since $y^6 - 2y^4 - y^3 - 1$ is the minimal polynomial of β and $y \approx -1.26493$ is also a root. Let $x = \beta^{-2} + (\beta^3 - \beta)^{-1}$. The sets $\hat{J}_{\beta}(x) = \{v_i\}_{i=1}^{12}$ and $\hat{S}_{\beta}(x) = \{v_1, v_8\}$ are illustrated in Fig. 2. Then $\#\Sigma_{\beta}(x) = \aleph_0$ by Theorem 2.3(b).

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments and suggestions, which leads to a significant improvement of the manuscript. The first and third authors were supported by the National Natural Science Foundation of China (NSFC) #11201312, #61373087, #61272252, #61472257, the Foundation for Distinguished Young Teachers in Guangdong, China #Yq2013144, and Guangdong Natural Science Foundation of China #2015A030313557, #2015A030313550. The second author was supported by the National Natural Science Foundation of China (NSFC) #11271137 and Science and Technology Commission of Shanghai Municipality (STCSM), #13dz2260400.

References

- J. P. Allouche and M. Cosnard, The Komornik-Loreti constant is transcendental, *Amer. Math. Monthly* 107(5) (2000) 448-449.
- [2] S. Baker, The growth rate and dimension theory of beta-expansions, Fund. Math. 219(3) (2012) 271–285.
- [3] _____, On universal and periodic β -expansions, and the Hausdorff dimension of the set of all expansions, *Acta Math. Hungar.* **142**(1) (2014) 95–109.

- [4] A. Bogmér, M. Horváth and A. Sövegjártó, On some problems of I. Joó, Acta Math. Hungar. 58(1-2) (1991) 153-155.
- K. Dajani and M. de Vries, Measures of maximal entropy for random β -expansions, J. Eur. Math. Soc. **7**(1) (2005) 51–68.
- [6] _____, Invariant densities for random β -expansions, J. Eur. Math. Soc. 9(1) (2007) 157 - 176.
- [7] Z. Daróczy and I. Kátai, On the structure of univoque numbers, Publ. Math. Debrecen **46**(1) (1995) 385–408.
- [8] M. de Vries and V. Komornik, Unique expansions of real numbers, Adv. Math. 221(2) (2009) 390-427.
- [9] P. Erdős, M. Horváth and I. Joó, On the uniqueness of the expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ Acta Math. Hungar. 58(3-4) (1991) 333-342.
- [10] P. Erdős, P. I. Joó and V. Komornik, Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems, Bull. Soc. Math. France 118(3) (1990) 377-
- [11] D. J. Feng and N. Sidorov, Growth rate for beta-expansions, Monatsh. Math. 162(1) (2011) 41-60.
- [12] P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett. 8(4) (2001) 535-543.
- [13] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly **105**(7) (1998) 936–939.
- _____, Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar. 44(2) (2002) 195–216.
- , On the topological structure of univoque sets, J. Number Theory 122(1) $(2007)\ 157-183.$
- [16] D. R. Kong, W. X. Li and M. Dekking, Intersections of homogeneous Cantor sets and beta-expansions *Nonlinearity* **23**(11) (2010) 2815–2834.
- [17] D. R. Kong and W. X. Li, Hausdorff dimension of unique beta expansions, Nonlinearity **28**(1) (2015) 189–209.
- [18] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, 1995).
- [19] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11(3) (1960) 401-416.
- [20] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8(3-4) (1957) 477-493.
- N. Sidorov, Almost every number has a continuum of β -expansions, Amer. Math. Monthly 110(9) (2003) 838–842.
- _____, Ergodic-theoretic properties of certain Bernoulli convolutions, Acta Math. [22]Hungar. 101(4) (2003) 345–355.
- _____, Combinatorics of linear iterated function systems with overlaps, Nonlinearity [23] **20**(5) (2007) 1299–1312.
- [24] Y. R. Zou, J. Lu and W. X. Li, Unique expansion of points of a class of self-similar sets with overlaps, Mathematika **58**(2) (2012) 371–388.